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Abstract

Objective: To evaluate and compare the distribution and density of primordial follicles within a whole sheep ovary and to
gain insight into how to overcome the impact of natural follicular heterogeneity on the experimental results.

Design: Histological study.

Setting: Academic research center.

Animals: Five- to nine-month-old ewes.

Interventions: Freshly sampled whole sheep ovaries were collected and prepared for histological analysis.

Main Outcome Measure(s): The follicular densities and distributions were determined for hematoxylin and eosin sections. A
mathematical model was derived based on the follicle counts and Monte-Carlo simulations.

Results: Heterogeneous distributions and densities of primordial follicles were identified 1) for distinct areas of the same
ovarian cortex, 2) between the ovaries of the same animal and 3) across different ewes. A mathematical model based on the
analysis of 37,153 primordial follicles from 8 different ovaries facilitated the estimation of the number of cortical biopsies
and sections that had to be analyzed to overcome such heterogeneity.

Conclusion: The influence of physiological follicular heterogeneity on experimental and clinical results can be overcome
when a definite number of cortical pieces and sections are taken into consideration.
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Introduction

Ovarian cryopreservation is a promising technique for fertility
preservation in young women with cancer prior to sterilization by
chemotherapy or radiotherapy. This technique creates the hope of
restoring gonadal function in iatrogenically sterilized patients upon
autografting [1,2]. Moreover, ovarian cryopreservation is the most
appropriate strategy when embryonic cryopreservation is not
feasible [3].
Fifteen years of clinical advances in ovarian tissue cryopreser-

vation and cryobanking demonstrate that the procedure is safe,
easy and promising. The pregnancy rate after the autografting of
cryopreserved tissue to orthotopic sites is estimated to be
approximately 30%, although the precise denominator is currently

unknown [4]. To date, approximately 24 infants have been born
worldwide using this procedure [5].
Even if human ovarian tissue has been occasionally used in

studies of animal models [6], ethical barriers and the limited
availability of human ovarian tissue preclude the widespread use of
human ovaries for research. Consequently, there is an unmet need
for a robust animal model comparable with humans. The ‘‘ideal’’
animal model should be similar to humans in terms of
biochemical, physiological and anatomical characteristics. The
greatest contribution of animal models, especially those of
nonhuman primates, is that they offer the ability to conduct
controlled experiments that would be logistically or ethically
proscribed in women [7,8]. In the case of cryopreservation studies,
additional criteria for suitability as an animal model research tool
would be similar ovarian architectures, a limited number of
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Figure 1. Flow chart of the experimental design (A) and representative histology of a sheep cortex section (B). Ovaries were harvested
from two ewes and fully cut into cortical fragments. Subsequently, each fragment was serially and completely sectioned, and approximately 40 H&E
sections, each 30 mm apart from one another, were further used for the follicular quantification (A). The uneven repartition of follicles within the
sheep ovarian cortex is obvious (B). The left part of the H&E section is completely devoid of primordial follicles, whereas the right part contains mostly
primordial follicles. Primordial follicles (plain arrows) and secondary follicles (arrowhead).
doi:10.1371/journal.pone.0091073.g001
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developed follicles and a single ovulation with primordial follicles
distributed superficially in the cortex [9]. The sheep ovary is an
adequate candidate for research according to these criteria. Its size
is 80% of the human premenopausal ovary [9,10,11], and it has a
comparable collagen-dense cortical layer containing the pool of
primordial follicles. Indeed, the sheep ovary has been used for
many studies [12,13,14,15,16].
The pool of human primordial follicles in cryopreserved ovarian

cortical biopsies is of major importance for the subsequent
restoration of fertility. The cryopreservation of live human ovarian
tissue requires that cortical slices be no more than 1 mm thick.
When the follicular reserve is low, this technical limitation
decreases the likelihood of adequate follicle collection and
increases the risk of subsequently transplanting empty biopsies.
In women, follicle density and follicle distribution have been
described as being highly variable according to the age and
physiologic status [17,18,19,20]. Different strategies have been
pursued to facilitate the assessment of follicle density in situ as a
research tool to ensure that only tissue pieces with abundant
follicles are used [21,22]. No precise data, methodology or
guidelines for ovarian tissue analysis are available.
The purpose of the present study was to evaluate and compare

the distribution and density of primordial follicles within a whole
sheep ovary. Furthermore, we established a mathematical model
to estimate the number of cortical pieces or sections that should be
analyzed to limit the impact of follicular heterogeneity on
experimental results.

Materials and Methods

1) Collection and preparation of ovarian tissue
The Animal Ethics Committee of the University of Namur

approved the use of sheep ovarian tissue. Eight ovaries harvested
from four ewes (5 K, 7, 6 and 9 months old) were obtained from
the Ovine Research Center (University of Namur). After
euthanasia, the ovaries were immersed in Leibovitz L-15 medium
(Lonza, Verviers, Belgium, BE12-700F) supplemented with 10%
normal sheep serum and transported at 4uC to the laboratory
within 1 h. For each ovary, the medulla was removed, and the
cortex was cut into small pieces (2.562.561 mm). The cortical
fragments were fixed in 4% paraformaldehyde, embedded in

paraffin and fully cut into 5-mm-thick serial sections stained with
hematoxylin and eosin (H&E) (Tribune Stainer HCS 33).

2) Virtual images acquisition
Virtual images were acquired with the fully automated digital

microscopy system dotSlide (Olympus, BX51TF, Aartselaar,
Belgium) coupled with a Peltier-cooled high-resolution digital
color camera (137661032 pixels) (Olympus, XC10, Aartselaar,
Belgium). Digital images of the whole tissue sections were digitized
at high magnification (1006), producing virtual images with a
pixel size of 1.510 mm.

3) Ovarian cortex analysis
The whole scanned H&E sections were analyzed using Image J

software. The follicles were quantified manually, and to avoid
double counting, only follicles with visible nuclei were taken into
account. Follicles were then classified according to their maturity
(primordial, primary or secondary follicles), as previously described
[23]. The follicular densities (number/mm2) were calculated after
manually outlining the cortical surface (Image J software).

4) Statistical analysis
To model the impact of the ewes, ovaries and ovarian fragments

on the primordial follicle density, a linear mixed model was
applied to the density of primordial follicles xð Þ after subjecting the
variable to the following base-10 logarithmic transformation:
log xz1ð Þð Þ. All data analyses were performed using JMP v10.0
(SAS institute, Cary, USA).

Results

1) Primordial follicle distributions and densities within
whole sheep ovaries
To assess the primordial follicle distributions in the sheep

cortex, we analyzed the whole ovaries using the procedure
depicted in the flow chart presented in Figure 1A. Both ovaries
from 4 young ewes were collected. After removal of the medulla,
the remaining cortex was cut into small fragments (9–21 frag-
ments/ovary). Each fragment was completely serially sectioned
(5 mm thick). Because sheep primordial follicle diameters range
from 20 to 30 mm, we analyzed every sixth section of the serially

Figure 2. Representative illustration of the primordial follicular quantification. Mean primordial follicle densities (number/mm2) of 40
sections per fragment for 20 fragments from the same ovary (A) are shown. An example of the primordial follicle density within serial sections (at a
30-mm distance) of three fragments from the same ovary is also illustrated (a, b and c) (B).
doi:10.1371/journal.pone.0091073.g002

Table 1. Follicle quantification in the whole ovaries.

H&E sections analyzed Primordial follicle number Primary follicle number

Ewe 1, ovary 1 657 5624 325

Ewe 1, ovary 2 669 8572 317

Ewe 2, ovary 1 632 7746 235

Ewe 2, ovary 2 567 6808 628

Ewe 3, ovary 1 301 2409 619

Ewe 3, ovary 2 360 2369 320

Ewe 4, ovary 1 378 2345 267

Ewe 4, ovary 2 288 1285 267

Total 3,852 37,153 2,978

doi:10.1371/journal.pone.0091073.t001
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sectioned ovarian cortex fragments. In total, 3,852 H&E sections
were analyzed. Figure 1B illustrates one H&E section of a hemi-
ovary where uneven primordial follicle distribution is obvious.
In this study, we only quantified primordial and primary follicles

(Table 1). Secondary follicles representing less than 1% of the
entire population were not taken into account. Figure 2 illustrates
the primordial follicle density analysis for a single whole sheep
ovary. The primordial follicle density is highly variable both
between fragments belonging to the same ovary (Figure 2A) and
among serial sections belonging to the same fragment (Figure 2B).
In each ovary, there was a wide variation in the number of
primordial follicles across the fragments. This analysis highlights
the importance of adequately determining the number of
fragments or sections necessary to overcome physiological
follicular heterogeneity.

2) Mathematical model
To create a linear mixed model of the follicle counts, the ewes

and ovaries were treated as fixed factors. The ovaries were nested
into the ewes, and the ovarian fragments were treated as random
factors. After logarithmically transforming the primordial follicle
densities, the weights of the fixed factors could be determined: the
ewes had a significant effect on the primordial follicle density (p-

value,0.0001). This finding indicated that the primordial follicle
density was not identical between the two ewes. Moreover, the
ovaries had a significant effect on the primordial follicle density (p-
value,0.0001). Indeed, the follicular density was different
between the two ovaries collected from the same animal. These
findings indicated that in an experimental setup aiming to study
the effects of specific treatments on follicular density, a single ovary
should be used to limit the impact of the fixed factors (such as ewes
and ovaries). Alternatively, if several ewes or several ovaries are
required, then their effects should be included in the statistical
model to extract their interferential influences over the treatment
effects.
In a specific ovary, 9 to 21 pieces of cortex were analyzed, and

the histological evaluation of the primordial follicle density
revealed a wide variation among the sections of the same fragment
(Figure 2). When ovarian fragments were treated as random
factors with the residual error representing the number of sections
per ovarian fragment, the statistical analysis clearly showed that
the major source of variability was due to the sections per ovary
fragment, accounting for 90% of the total variance (Table 2). The
residual variability linked to the fragments accounted for only 10%
of the total variance. This finding suggests that to increase the
precision of the primordial follicular density measurement,

Table 2. Variance components of the random-effects fragments and sections and their respective standard errors.

Random effects Variance component Standard error Proportion of variance

Fragment 0.116 0.037 10.4663.00%

Section 0.993 0.023 89.5462.06%

doi:10.1371/journal.pone.0091073.t002

Table 3. Results of the Monte-Carlo simulations.

Fixed effect (%) Number of fragments Number of sections Probability of detecting the effect (%)

50 20 or 10 or 5 40 or 20 or 10 100

25 20 40 100

25 20 20 100

25 20 10 99

25 10 40 100

25 10 20 98

25 10 10 93

25 5 40 94

25 5 20 87

25 5 10 74

10 20 40 84

10 20 20 71

10 20 10 54

10 10 40 70

10 10 20 53

10 10 10 39

10 5 40 56

10 5 20 44

10 5 10 29

The probability of detecting an effect on the primordial follicular density (i.e., power) was calculated with the fixed effects arbitrarily set at 50, 25 and 10% and a
confidence level of alpha = 0.05 for various combinations of the numbers of ovary fragments and sections per fragment.
doi:10.1371/journal.pone.0091073.t003
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increasing the number of sections per fragment rather than the
number of analyzed fragments is more rewarding.
In the ovarian cortex, the primordial follicles represented the

most important follicle population; therefore, we based the rest of
our statistical analysis on their density. The primary follicles,
however, displayed the same distribution profiles and density
heterogeneities (data not shown).

3) Determination of the sample size
Based on the results obtained from the analysis of the follicular

densities, Monte-Carlo simulations were performed to determine
the best experimental design required to evaluate the effects of a
specific ovarian treatment. The same linear mixed model as
described for the analyses above was used. The logarithmically
transformed primordial follicle densities were hence supposed to
follow a normal distribution. Estimations of the effect of the ewes
and ovaries obtained from the previous statistical analysis were
used as fixed values in the model to define the mean of the
distribution used for simulation. The estimated variance compo-
nents of the ovarian fragments and sections were used to define the
variance of the logarithmically transformed primordial follicle
densities. An additional fixed factor was added to the mean of the
model corresponding to a treatment effect that could have an
impact on the follicle densities. The treatment fixed effects (i.e., the
effects of a treatment on follicular density that should be detected)
were arbitrarily set at 50, 25 and 10% modification of follicular
densities with respect to a control treatment. For each of these
three possibilities, 2000 simulations were performed for different
combinations of numbers of ovarian fragments (20, 10 or 5) and
numbers of sections per ovarian fragments (40, 20 or 10) defining
the sample size. The probability of detecting the prespecified effect
size on follicular density, i.e., the power of the test, was computed
(Table 3). In the simulations, the treatment effect was defined as
being significant for p-values,0.05. If a 50% improvement in the
follicular preservation is required, all experimental setups that
were tested allowed for detecting this improvement with 100%
probability. To detect a more subtle effect, e.g., 25% follicular
preservation with at least 95% probability, two experimental
setups out of five allowed us to limit the total number of analyzed
sections to 200 per group: either 10 fragments and 20 sections per
fragment or 20 fragments and 10 sections per fragment. To power
the system to detect an improvement in follicular preservation as
small as 10%, at least 20 fragments with 40 sections per fragment
had to be examined for the probability of detecting the effect to
remain above 80%.

Discussion

We used a methodologically rigorous and laborious research
technique to measure follicular distribution within the ovine
ovarian cortex. Serial sections of different fragments covering
several whole sheep ovaries displayed uneven primordial follicle
densities, as has already been reported for the human cortex
[17,19,20]. In our study, 3,852 sections belonging to 113 cortical
fragments extracted from eight ovaries were analyzed and
subsequently used to build a mathematical model useful for
further application in the field of reproductive medicine. The
primary focus of this study was not to perform comparisons among
individuals; our specific aim was to provide guidelines regarding
the number of samples and histological sections required to
achieve specific objectives in the improvement of follicular
cryopreservation.
Currently, the cryopreservation of cortical fragments followed

by transplantation represents the only opportunity for fertility

preservation available to young women with cancer who need
immediate chemotherapy. However, this strategy is still considered
an experimental technique that requires improvement. The initial
follicle density within cryopreserved ovarian tissue has a profound
impact on the transplantation success. The lifespan of the graft
depends on the number of preserved viable primordial follicles
[24,25].
The study of follicle preservation is still hampered by the lack of

a clearly defined experimental model that takes into account the
physiological heterogeneity within an ovarian cortex. A diagnostic
test that has the ability to confirm the presence of follicles and to
indicate the survival of cryopreserved follicles would be a valuable
tool in the field of reproductive medicine, particularly for ovarian
tissue cryopreservation. The accuracy of estimating the follicle
density in the human ovary based on a single biopsy or sample has
been questioned [26,27,28], and studies have shown large
variations in follicle density between and within ovaries when
multiple samples are examined [19] or a lack of homogeneous
follicle distribution even within a single sample [17,29,30,31]. In
situ follicle identification methods should be non-detrimental to the
tissue and should allow long-term follicle survival and growth.
Several methods of follicle detection using stereomicroscopic
localization, fluorescent probes (Calcein AM or rhodamine 123)
and the dye neutral red (NR) have been established [21,22,32]. All
of these methods for follicle visualization have their own
advantages and disadvantages (e.g., the expense and specificity
of the required equipment, operator experience, toxicity toward
oocytes and the thickness of cortical pieces [less than 500 mm]).
Therefore, none of these methods is suitable for evaluating the
follicular density in frozen-thawed fragments prior to transplan-
tation or for analyzing transplants after a defined period of
transplantation.
Our histological analysis followed by mathematical simulation

provides useful information for establishing a follicular quantifi-
cation method that considers the physiological follicular hetero-
geneity existing within the ovarian cortex and between ovaries or
individuals (Tables 2 and 3). This method can be usefully applied
in the field of ovarian tissue transplantation as an option for
fertility preservation. For example, to perform in vivo or in vitro
treatment comparisons, a sufficient number of cortical pieces from
the same ovary of the same animal with a sufficient number of
serial sections or fragments should be analyzed.
Additionally, our study clearly indicates that the number of

ovarian fragments and/or the number of sections/fragments
should be increased proportionately to the decreased expected
effect (Table 3). This method is also useful for determining the
number of host animals to be grafted for obtaining results that are
independent of the follicular heterogeneity.
In conclusion, our study offers a valuable tool for evaluating the

efficacy and safety of multiple treatments that may be beneficial
for follicular preservation within xenograft models, using either
human or sheep ovarian tissue.
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